Effect of fatty acids on glucose production and utilization in man.
Open Access
- 1 November 1983
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 72 (5), 1737-1747
- https://doi.org/10.1172/jci111133
Abstract
Since the initial proposal of the glucose fatty acid cycle, considerable controversy has arisen concerning its physiologic significance in vivo. In the present study, we examined the effect of acute, physiologic elevations of FFA concentrations on glucose production and uptake in normal subjects under three controlled experimental conditions. In group A, plasma insulin levels were raised and maintained at approximately 100 microU/ml above base line by an insulin infusion, while holding plasma glucose at the fasting level by a variable glucose infusion. In group B, plasma glucose concentration was raised by 125 mg/100 ml and plasma insulin was clamped at approximately 50 microU/ml by a combined infusion of somatostatin and insulin. In group C, plasma glucose was raised by 200 mg/100 ml above the fasting level, while insulin secretion was inhibited with somatostatin and peripheral glucagon levels were replaced with a glucagon infusion (1 ng/min X kg). Each protocol was repeated in the same subject in combination with a lipid-heparin infusion designed to raise plasma FFA levels by 1.5-2.0 mumol/ml. With euglycemic hyperinsulinemia (study A), lipid infusion caused a significant inhibition of total glucose uptake (6.3 +/- 1.3 vs. 7.4 +/- 0.6 mg/min X kg, P less than 0.02). Endogenous glucose production (estimated by the [3-3H]glucose technique) was completely suppressed both with and without lipid infusion. With hyperglycemic hyperinsulinemia (study B), lipid infusion also induced a marked impairment in glucose utilization (6.2 +/- 1.1 vs. 9.8 +/- 1.9 mg/min X kg, P less than 0.05); endogenous glucose production was again completely inhibited despite the increase in FFA concentrations. Under both conditions (A and B), the percentage inhibition of glucose uptake by FFA was positively correlated with the total rate of glucose uptake (r = 0.69, P less than 0.01). In contrast, when hyperglycemia was associated with relative insulinopenia and hyperglucagonemia (study C), thus simulating a diabetic state, lipid infusion had no effect on glucose uptake (2.9 +/- 0.2 vs. 2.6 +/- 0.2 mg/min X kg) but markedly stimulated endogenous glucose production (1.4 +/- 0.5 vs. 0.5 +/- 0.4 mg/min X kg, P less than 0.005). Under the same conditions as study C, a glycerol infusion producing plasma glycerol levels similar to those achieved with lipid-heparin, enhanced endogenous glucose production (1.5 +/- 0.5 vs. 0.7 +/- 0.6 mg/min X kg, P less than 0.05). We conclude that, in the well-insulinized state raised FFA levels effectively compete with glucose for uptake by peripheral tissues, regardless of the presence of hyperglycemia. When insulin is deficient, on the other hand, elevated rates of lipolysis may contribute to hyperglycemia not by competition for fuel utilization, but through an enhancement of endogenous glucose output.This publication has 58 references indexed in Scilit:
- Nonhypoglycemic glucoregulation: role of glycerol and glucoregulatory hormonesAmerican Journal of Physiology-Endocrinology and Metabolism, 1983
- Regulation of Splanchnic and Peripheral Glucose Uptake by Insulin and Hyperglycemia in ManDiabetes, 1983
- The Effect of Graded Doses of Insulin on Total Glucose Uptake, Glucose Oxidation, and Glucose Storage in ManDiabetes, 1982
- The Effect of Insulin on the Disposal of Intravenous Glucose: Results from Indirect Calorimetry and Hepatic and Femoral Venous CatheterizationDiabetes, 1981
- The Contrasting Responses of Splanchnic and Renal Glucose Output to Gluconeogenic Substrates and to Hypoglucagonemia in 60-h-fasted HumansDiabetes, 1980
- Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects.Journal of Clinical Investigation, 1980
- Glucose clamp technique: a method for quantifying insulin secretion and resistance.American Journal of Physiology-Endocrinology and Metabolism, 1979
- HYPERGLYCEMIA PER SE (INSULIN AND GLUCAGON WITHDRAWN) CAN INHIBIT HEPATIC GLUCOSE PRODUCTION IN MANJournal of Clinical Endocrinology & Metabolism, 1979
- Substrate Utilization in Perfused Skeletal MuscleDiabetes, 1979
- Influence of Maturity-onset Diabetes on Splanchnic Glucose Balance After Oral Glucose IngestionDiabetes, 1978