Abstract
Selenium (Se) deficiency in the experimental models,Coturnix coturnix japonica andCorcyra cephalonica, resulted in impaired mitochondrial substrate oxidations and lowered thiol levels. Studies with respiratory inhibitors confirmed reduced mitochondrial electron transport enzyme activities, especially at cytochromec oxidase (COX), the terminal segment. Enhanced mitochondrial lipid peroxidation in Se deficiency was more pronounced in the heart tissue of the quail compared to other tissues. Glutathione peroxidase (GSH-Px) activity toward H2O2 and cumene hydroperoxide were generally low in the insect muscle tissue and activity toward H2O2 was maximal in the quail heart mitochondria that was not very sensitive to Se status. Lowered COX activity in Se deficiency was more directly correlated with the increased level of lipid peroxidation than with the GSH-Px activity measured, suggestive of Se mediated protective mechanisms independent of GSH-Px. Electron microscopic observations revealed structural changes such as loss of cristae with proliferative and degenerative changes of the mitochondria in Se deficiency. Involvement of Se in maintaining structure and functional efficiency of mitochondria is evident from the present study.

This publication has 34 references indexed in Scilit: