Abstract
Theoretical analysis of the gain and threshold current of a semiconductor quantum dot (QD) laser is given which takes account of the line broadening caused by fluctuations in quantum dot sizes. The following processes are taken into consideration together with the main process of radiative recombination of carriers in QDs: band-to-band radiative recombination of carriers in the waveguide region, carrier capture into QDs and thermally excited escape from QDs, photoexcitation of carriers from QDs to continuous-spectrum states. For an arbitrary QD size distribution, expressions for the threshold current density as a function of the root mean square of relative QD size fluctuations, total losses in the waveguide region, surface density of QDs and thickness of the waveguide region have been obtained in an explicit form. The minimum threshold current density and optimum parameters of the structure (surface density of QDs and thickness of the waveguide region) are calculated as universal functions of the main dimensionless parameter of the theory developed. This parameter is the ratio of the stimulated transition rate in QDs at the lasing threshold to the spontaneous transition rate in the waveguide region at the transparency threshold. Theoretical estimations presented in the paper confirm the possibility of a significant reduction of the threshold currents of QD lasers as compared with the conventional quantum well lasers.