Abstract
It is proposed that an ice shelf disintegrates when its calving front retreats faster than its grounding line. This paper examines the role of ice thinning in grounding-line retreat. Thinning occurs as a result of creep spreading and ice melting. Thinning by creep is examined for the general regime of bending converging flow in an ice shelf lying in a confined embayment, and at the grounding lines of ice streams that supply the ice shelf and ice rises where the ice shelf is grounded on bedrock. Thinning by melting is examined at these grounding lines for tidal pumping and for descent of surface melt water into strandline crevasses, where concentrated melting is focused at the supposed weak links that connect the ice shelf to its embayment, its ice streams, and its ice rises. Applications are made to the Ross Ice Shelf.