Characterization of a nitric‐oxide‐catalysed ADP‐ribosylation of glyceraldehyde‐3‐phosphate dehydrogenase

Abstract
Auto-ADP-ribosylation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GraPDH) has recently been demonstrated to be dramatically stimulated in the presence of nitric oxide. In order to obtain insight into the sequence of events leading to ADP-ribosylation of GraPDH, we studied the target amino acid, the nucleotide cofactor requirement, pH dependency and the stoichiometry of the reaction. Basal as well as stimulated ADP-ribose transfer is inhibited by the SH-group alkylating reagent, N-ethylmaleimide. Furthermore, the radiolabel of auto-[32P]ADP-ribosylated GraPDH is removed by treatment with HgCl2, suggesting an ADP-ribose-cysteine bond. Several indirect and direct mechanistic considerations point to NAD+ as the only cofactor for the ADP-ribosylation reaction, excluding the possibility of a reaction sequence involving a NAD-glycohydrolase(s) followed by nonenzymatic ADP-ribose transfer to GraPDH. Optimal ADP-ribosylations were carried out at alkaline pH values using 10 microM free NAD+ as the sole nucleotide cofactor. Bovine serum albumin with an S-nitrosylated SH group can serve as a model of ADP-ribose transfer from NAD+ and suggests that the nitric-oxide-modified SH group (S-nitrosylated SH group) is a prerequisite for the reaction.

This publication has 36 references indexed in Scilit: