Synthesis and characterization of 1‐substituted 5‐alkylphenazine derivatives carrying functional groups

Abstract
The following 1-substituted derivatives of 5-methylphenazine and 5-ethylphenazine were synthesized: 1-(3-carboxyproploxy)-5-methylphenazine (1B), 1-(3-carboxypropyloxy)-5-ethylphenazine (2B), 1-(3-ethoxycarbonylpropyloxy)-5-ethylphenazine (2C) and 1-[N-(2-aminoethyl)carbamoylpropyloxy]-5-ethylphenazine (2D); their spectra, stability and reactivity as electron mediators were investigated, together with those of 5-methylphenazine (1A) and 5-ethylphenazine (2A). The 1-substituted derivatives are all insensitive to light and the derivatives of 5-ethylphenazine are more stable than those of 5-methylphenazine under neutral and alkaline conditions; 2B is the most stable of all the derivatives. The spectral properties of all the derivatives. The spectral properties of the decomposed compounds showed that photodecomposition of 1A and 2A is associated with hydroxylation at position 1, alkali decomposition of 1A and 1B with elimination of the 5-methyl group and alkali decomposition of 2A, 2B, and 2D with a ring-opening reaction. The second-order rate constant k1 for the reaction of the phenazine derivatives with NADH was measured under steady-state conditions. The k1 values vary depending on the substituents at positions 1 and 5: the values for 1A, 1B, 2A, 2B, 2C and 2D are 1.83 mM-1 s-1, 3.33 mM-1 s-1, 0.75 mM-1 s-1, 1.42 mM-1 s-1, 1.68 mM-1 s-1 and 2.03 mM-1 s-1, respectively. The constants, k2 and k3, for the reactions of the reduced form of 2B with oxygen and with 3-(4'',5''-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium ion, respectively, were k2 = 1.21 mM-1 s-1 and k3 = 91 mM-1 s-1. These phenazine have potential applications in the biochemical field.