Nucleotide sequence of the Salmonella typhimurium mutS gene required for mismatch repair: homology of MutS and HexA of Streptococcus pneumoniae

Abstract
The mutS gene product of Escherichia coli and Salmonella typhimurium is one of at least four proteins required for methyl-directed mismatch repair in these organisms. A functionally similar repair system in Streptococcus pneumoniae requires the hex genes. We have sequenced the S. typhimurium mutS gene, showing that it encodes a 96-kilodalton protein. Amino-terminal amino acid sequencing of purified S. typhimurium MutS protein confirmed the initial portion of the deduced amino acid sequence. The S. typhimurium MutS protein is homologous to the S. pneumoniae HexA protein, suggesting that they arose from a common ancestor before the gram-negative and gram-positive bacteria diverged. Overall, approximately 36% of the amino acids of the two proteins are identical when the sequences are optimally aligned, including regions of stronger homology which are of particular interest. One such region is close to the amino terminus. Another, located closer to the carboxy terminus, includes homology to a consensus sequence thought to be diagnostic of nucleotide-binding sites. A third one, adjacent to the second, is homologous to the consensus sequence for the helix-turn-helix motif found in many DNA-binding proteins. We found that the S. typhimurium MutS protein can substitute for the E. coli MutS protein in vitro as it can in vivo, but we have not yet been able to demonstrate a similar in vitro complementation by the S. pneumoniae HexA protein.