Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates
Open Access
- 1 July 1990
- journal article
- research article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 10 (7), 2308-2317
- https://doi.org/10.1523/jneurosci.10-07-02308.1990
Abstract
We have compared the time course of the behavioral manifestations of opiate withdrawal to the in vivo activity of locus coeruleus (LC) neurons and to increases in the levels of G-proteins, adenylate cyclase, and cAMP-dependent protein kinase known to occur in the LC in opiate-dependent animals. Rats were given morphine by daily subcutaneous implantation of morphine pellets for 5 d. On the sixth day, morphine withdrawal was induced by subcutaneous administration of naltrexone, an opiate receptor antagonist, with additional doses given 6 and 24 hr later, conditions that resulted in sustained, maximal levels of withdrawal over the duration of the experiment. We found a striking parallel between the time courses of the behavioral signs and the increased activity of LC neurons during withdrawal, both of which appeared to follow 2 phases. There was an early, rapid phase, during which withdrawal signs and increased LC activity became most pronounced within 15–30 min after naltrexone administration, and then recovered rapidly by over 50% within 4 hr of withdrawal. Subsequently, there was a slower phase, during which the persisting withdrawal signs and elevated LC activity remained roughly constant from 4 to 24 hr and did not recover completely until after 72 hr of continuous withdrawal. Adenylate cyclase and cAMP-dependent protein kinase activities in isolated LC subcellular fractions, both elevated in dependent animals, recovered to control levels after 6 hr of withdrawal, in parallel with the rapid phase of withdrawal. Levels of G1 and Go, also elevated in dependent animals, remained only slightly elevated at 6 hr and returned to normal by 24 hr. Taken together, these data suggest that increased neuronal activity in the LC is associated temporally with the behavioral morphine withdrawal syndrome and that increased levels of G- proteins and an up-regulated cAMP system may contribute to the early withdrawal activation of these neurons.This publication has 35 references indexed in Scilit:
- PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENTPublished by Elsevier ,2021
- Pertussis toxin blocks the outward currents evoked by opiate and α2-agonists in locus coeruleus neuronsBrain Research, 1986
- Locus coeruleus unit activity in freely moving cats is increased following systemic morphine administrationBrain Research, 1985
- BIOCHEMICAL CORRELATES OF MORPHINE WITHDRAWAL .2. EFFECTS OF CLONIDINE1985
- Dorsal noradrenergic bundle lesions fail to alter opiate withdrawal or suppression of opiate withdrawal by clonidineLife Sciences, 1984
- Morphine tolerance and dependence in the locus coeruleus: Single cell studies in brain slicesEuropean Journal of Pharmacology, 1983
- Spinal Sympathetic Neurons: Possible Sites of Opiate-Withdrawal Suppression by ClonidineScience, 1982
- Comparison of two α-noradrenergic agonists (clonidine and guanfacine) on norepinephrine turnover in the cortex of rats during morphine abstinenceEuropean Journal of Pharmacology, 1981
- CLONIDINE BLOCKS ACUTE OPIATE-WITHDRAWAL SYMPTOMSThe Lancet, 1978
- Iontophoretic application of opiates to the locus coeruleusBrain Research, 1977