Time‐varying magnetic fields: Effects of orientation on chondrocyte proliferation

Abstract
The purpose of this study was to determine the effect of orientation of pulsed electromagnetic fields (PEMFs) on cellular proliferation and extracellular matrix synthesis. Bovine articular chondrocytes were cultured in PEMFs (repetitive pulse at 72 Hz) generated using Helmholtz coils oriented either parallel (horizontal) or perpendicular (vertical) to the plane of cell adhesion. Dissipation of signal energy in the form of heat increased the temperature of the PEMF coils by 2°C and the tissue culture medium by 1°C. Therefore, control coils, which emitted no PEMFs, were heated to the temperature of PEMF coils by circulating water. Chondrocytes were cultured in 16-mm-well culture plates, and the data for individual wells were pooled as triplicates. Although not observed by microscopic examination of individual wells, positionally dependent electric field effects may be minimized by this approach. PEMFs generated by coils oriented vertically significantly decreased chondrocyte proliferation. The effect was dependent on the concentration of serum in the culture media. At 3% serum concentration, the total cell number attained after 10 days of culture was reduced by 50% in stimulated cultures when compared with controls. At 5% serum concentration, there was no effect. PEMFs applied by coils oriented horizontally did not alter proliferation of articular chondrocytes. PEMFs had no effect on synthesis of extracellular matrix by chondrocytes plated at high density, irrespective of orientation.