Thyrotropin-releasing Hormone Stimulation of Prolactin Release from Clonal Rat Pituitary Cells
Open Access
- 1 June 1981
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 67 (6), 1769-1776
- https://doi.org/10.1172/jci110216
Abstract
Thyrotropin-releasing hormone (TRH) stimulates prolactin release and 45Ca2+ efflux from GH3 cells, a clonal strain of rat pituitary cells. Elevation of extracellular K+ also induces prolactin release and increases 45Ca2+ efflux from these cells. In this report, we distinguish between TRH and high K+ as secretagogues and show that TRH-induced release of prolactin and 45Ca2+ is independent of the extracellular Ca2+ concentration, but the effect of high K+ on prolactin release and 45Ca2+ efflux is dependent on the concentration of Ca2+ in the medium. The increment in 45Ca2+ efflux induced by 50 mM K+ during perifusion was reduced in a concentration-dependent manner by lowering extracellular Ca2+ from 1,500 to 0.02 μM (by adding EGTA), whereas 1 μM TRH enhanced 45Ca2+ efflux similarly over the entire range of extracellular Ca2+ concentrations. Although 50 mM K+ caused release of 150 ng prolactin from 40 × 106 GH3 cells exposed to 1,500 μM Ca2+ (control), reduction of extracellular Ca2+ to 2.8 μM decreased prolactin release caused by high K+ to + in medium with 0.02 μM free Ca2+. In contrast, TRH caused release of 64 ng of prolactin from 40 × 106 GH3 cells exposed to medium with 1,500 μM Ca2+, and release caused by TRH was still 50 and 35% of control in medium with 2.8 and 0.02 μM Ca2+, respectively. Furthermore, TRH transiently increased by 10-fold the fractional efflux of 45Ca2+ from GH3 cells in static incubations with 1,500 or 3.5 μM Ca2+, hereby confirming that the enhanced 45Ca2+ efflux caused by TRH in both low and high Ca2+ medium was not an artifact of the perifusion system. Data obtained with chlortetracycline (CTC), a probe of membrane-bound Ca2+, were concordant with those obtained by measuring 45Ca2+ efflux. Cellular fluorescence of CTC varied with the extracellular Ca2+ concentration and the duration of incubation. TRH decreased the fluorescence of cell-associated CTC in a manner strongly suggesting stimulus-induced mobilization of Ca2+, and this effect was still demonstrable in GH3 cells incubated in 50 mM K+. These data suggest that TRH acts to mobilize sequestered cell-associated Ca2+ reflected as a 45Ca2+ efflux which is independent of the extracellular Ca2+ concentration. Mobilization of sequestered Ca2+ into the cytoplasm may elevate free intracellular Ca2+ and serve to couple stimulation by TRH to secretion of prolactin.This publication has 39 references indexed in Scilit:
- Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as fluorescent probe.The Journal of cell biology, 1978
- Sodium and calcium action potential in pituitary cellsNature, 1977
- Measurement of Growth Hormone Synthesis by Rat Pituitary Cells in Culture*Endocrinology, 1973
- Observation of calcium uptake by isolated sarcoplasmic reticulum employing a fluorescent chelate probeBiochemical and Biophysical Research Communications, 1972
- Interaction of thyrotropin releasing factor with membrane receptors of pituitary cellsBiochemical and Biophysical Research Communications, 1972
- Binding of Thyrotropin-Releasing Hormone to Plasma Membranes of Bovine Anterior Pituitary GlandProceedings of the National Academy of Sciences, 1972
- 45Ca Uptake During theIn VitroRelease of Hormones from the Rat AdenohypophysisEndocrinology, 1971
- Visualization of membrane bound cations by a fluorescent techniqueBiochemical and Biophysical Research Communications, 1971
- Stimulus‐secretion coupling: the concept and clues from chromaffin and other cellsBritish Journal of Pharmacology, 1968
- Presence of calcium ions as a requisite for the in vitro stimulation of TSH-release by hypothalamic TRFCellular and Molecular Life Sciences, 1967