The Potential to Narrow Uncertainty in Regional Climate Predictions

Abstract
Faced by the realities of a changing climate, decision makers in a wide variety of organizations are increasingly seeking quantitative predictions of regional and local climate. An important issue for these decision makers, and for organizations that fund climate research, is what is the potential for climate science to deliver improvements—especially reductions in uncertainty—in such predictions? Uncertainty in climate predictions arises from three distinct sources: internal variability, model uncertainty, and scenario uncertainty. Using data from a suite of climate models, we separate and quantify these sources. For predictions of changes in surface air temperature on decadal timescales and regional spatial scales, we show that uncertainty for the next few decades is dominated by sources (model uncertainty and internal variability) that are potentially reducible through progress in climate science. Furthermore, we find that model uncertainty is of greater importance than internal variability. O... Abstract Faced by the realities of a changing climate, decision makers in a wide variety of organizations are increasingly seeking quantitative predictions of regional and local climate. An important issue for these decision makers, and for organizations that fund climate research, is what is the potential for climate science to deliver improvements—especially reductions in uncertainty—in such predictions? Uncertainty in climate predictions arises from three distinct sources: internal variability, model uncertainty, and scenario uncertainty. Using data from a suite of climate models, we separate and quantify these sources. For predictions of changes in surface air temperature on decadal timescales and regional spatial scales, we show that uncertainty for the next few decades is dominated by sources (model uncertainty and internal variability) that are potentially reducible through progress in climate science. Furthermore, we find that model uncertainty is of greater importance than internal variability. O...