Biophysical properties and microfilament assembly in neutrophils: modulation by cyclic AMP.
Open Access
- 15 September 1991
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 114 (6), 1179-1190
- https://doi.org/10.1083/jcb.114.6.1179
Abstract
The microfilament lattice, composed primarily of filamentous (F)-actin, determines in large part the mechanical (deformability) properties of neutrophils, and thus may regulate the ability of neutrophils to transit a microvascular bed. Circulating factors may stimulate the neutrophil to become rigid and therefore be retained in the capillaries. We hypothesized that cell stiffening might be attenuated by an increase in intracellular cAMP. A combination of cell filtration and cell poking (mechanical indentation) was used to measure cell deformability. Neutrophils pretreated with dibutyryl cAMP (db-cAMP) or the combination of prostaglandin E2 (PGE2, a stimulator of adenylate cyclase) and isobutylmethylxanthine (IBMX, an inhibitor of phosphodiesterase) demonstrated significant inhibition of the n-formyl-methionyl-leucyl-phenylalanine (fMLP)-inducing stiffening. The inhibition of cell stiffening was associated with an increase in intracellular cAMP as measured by enzyme-linked immunoassay (EIA) and an increase in the activity of the cAMP-dependent kinase (A-kinase). Treatment with PGE2 and IBMX also resulted in a decrease in the F-actin content of stimulated neutrophils as assayed by NBD-phallacidin staining and flow cytometry or by changes in right angle light scattering. Direct addition of cAMP to electropermeabilized neutrophils resulted in attenuation of fMLP-induced actin assembly. Neutrophils stimulated with fMLP demonstrated a rapid redistribution of F-actin from a diffuse cortical location to a peripheral ring as assessed by conventional and scanning confocal fluorescence microscopy. Pretreatment of neutrophils with the combination of IBMX and PGE2 resulted in incomplete development and fragmentation of the cortical ring. We conclude that assembly and redistribution of F-actin may be responsible for cell stiffening after exposure to stimulants and that this response was attenuated by agents that increase intracellular cAMP, by altering the amount and spatial organization of the microfilament component of the cytoskeleton.Keywords
This publication has 57 references indexed in Scilit:
- Changes in neutrophil right‐angle light scatter can occur independently of alterations in cytoskeletal actinCytometry, 1990
- Receptor-mediated actin assembly in electropermeabilized neutrophils: Role of intracellular pHBiochemical and Biophysical Research Communications, 1989
- Cyclic AMP increasing agents rapidly stimulate vimentin phosphorylation in quiescent cultures of Swiss 3T3 cellsJournal of Cellular Physiology, 1988
- Rat basophilic leukemia cells stiffen when they secrete.The Journal of cell biology, 1987
- Protein kinase C and cAMP‐dependent protein kinase induce opposite effects on actin polymerizabilityFEBS Letters, 1987
- Receptor-specific threshold effects of cyclic AMP are involved in the regulation of enzyme release and superoxide production from human neutrophilsBiochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1985
- Rapid changes in light scattering from human polymorphonuclear leukocytes exposed to chemoattractants. Discrete responses correlated with chemotactic and secretory functions.Journal of Clinical Investigation, 1984
- Bradykinin-induced release of prostacyclin and thromboxanes from bovine pulmonary artery endothelial cells studies with lower homologs and calcium antagonistsBiochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1983
- Increased levels of cyclic adenosine-3',5'-monophosphate in human polymorphonuclear leukocytes after surface stimulation.Journal of Clinical Investigation, 1980
- Protein Phosphorylation Catalyzed by Cyclic AMP-Dependent and Cyclic GMP-Dependent Protein KinasesAnnual Review of Pharmacology and Toxicology, 1980