TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts
Top Cited Papers
- 23 June 2009
- journal article
- research article
- Published by Springer Nature in Journal of Biomolecular NMR
- Vol. 44 (4), 213-223
- https://doi.org/10.1007/s10858-009-9333-z
Abstract
NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between 13C, 15N and 1H chemical shifts and backbone torsion angles ϕ and ψ (Cornilescu et al. J Biomol NMR 13 289–302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted ϕ and ψ angles, equals ±13°. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.Keywords
This publication has 47 references indexed in Scilit:
- De novo protein structure generation from incomplete chemical shift assignmentsJournal of Biomolecular NMR, 2008
- Solution NMR structure determination of proteins revisitedJournal of Biomolecular NMR, 2008
- Quantum chemical 13 C α chemical shift calculations for protein NMR structure determination, refinement, and validationProceedings of the National Academy of Sciences, 2008
- CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence dataNucleic Acids Research, 2008
- Consistent blind protein structure generation from NMR chemical shift dataProceedings of the National Academy of Sciences, 2008
- BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositionsJournal of Biomolecular NMR, 2008
- Protein structure determination from NMR chemical shiftsProceedings of the National Academy of Sciences, 2007
- Protein secondary structure prediction based on position-specific scoring matrices 1 1Edited by G. Von HeijneJournal of Molecular Biology, 1999
- Prediction of Protein Secondary Structure at Better than 70% AccuracyJournal of Molecular Biology, 1993
- Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical featuresBiopolymers, 1983