Role of electron-transfer quenching of chlorophyll fluorescence by carotenoids in non-photochemical quenching of green plants

Abstract
NPQ (non-photochemical quenching) is a fundamental photosynthetic mechanism by which plants protect themselves against excess excitation energy and the resulting photodamage. A discussed molecular mechanism of the so-called feedback de-excitation component (qE) of NPQ involves the formation of a quenching complex. Recently, we have studied the influence of formation of a zeaxanthin-chlorophyll complex on the excited states of the pigments using high-level quantum chemical methodology. In the case of complex formation, electron-transfer quenching of chlorophyll-excited states by carotenoids is a relevant quenching mechanism. Furthermore, additionally occurring charge-transfer excited states can be exploited experimentally to prove the existence of the quenching complex during NPQ.