Induction of Systemic TH1-Like Innate Immunity in Normal Volunteers Following Subcutaneous but Not Intravenous Administration of CPG 7909, a Synthetic B-Class CpG Oligodeoxynucleotide TLR9 Agonist

Abstract
Subcutaneous injection of normal human volunteers with a B-class CpG oligodeoxynucleotide (ODN) TLR9 agonist, CPG 7909, induced a TH1-like pattern of systemic innate immune activation manifested by expression of IL-6, IL-12p40, IFN-α, and IFN-inducible chemokines. Serum IP-10 was found to be the most sensitive assay for subcutaneous CPG 7909 stimulation; its level was significantly increased in all subjects at all dose levels, including the lowest tested dose of just 0.0025 mg/kg. This pattern of chemokine and cytokine induction was markedly different from that previously reported to be induced by TLR9 stimulation in rodents, most likely reflecting species-specific differences in the cell types expressing TLR9. Subcutaneous CPG 7909 injection induced transient shifts in blood neutrophils, lymphocytes, and monocytes, consistent with the increased chemokine expression. Levels of acute phase reactants such as C-reactive protein were also increased. A second subcutaneous CPG 7909 injection administered 2 weeks after the first elicited similar immune responses, showing little or no tolerance to the effects of repeated in vivo TLR9 stimulation. Subjects developed dose-dependent transient injection site reactions and flu-like symptoms but otherwise tolerated injection well, with no evidence of organ toxicity or systemic autoimmunity. The activation of innate immunity was dependent on the route of ODN administration, since intravenous injection caused no such effects. These studies indicate that in vivo activation of TLR9 by subcutaneous administration of CPG 7909 could be a well-tolerated immunotherapeutic approach for induction of TH1 innate immune activation.