Model for melting enthalpy of Sn in Ge–Sn composites

Abstract
The finding of Jang and Koch that the melting enthalpy/mass, ΔHm, of a Sn matrix containing a fine dispersion of Ge particles sharply decreases with increasing Ge volume fraction, νGe, >0.5 and vanishes at νGe = ν°Ge ≍ 0.81, is accounted for by supposing that the Sn is distributed between an interfacial and bulk state. The interfacial statc is one in which the Sn is assumed to be in a disordered, possibly amorphous, structure coating the Ge particles uniformly to a constant thickness, δ. The remaining “bulk” Sn is assumed to exhibit the normal enthalpy of fusion, ΔH°m. The model accounts for the dependence of ΔHm on νGe within the experimental uncertainty. With the average width of Ge particles −10 nm, δ is estimated to be −0.23 nm; i.e., of the order of the thickness of one Sn monolayer.