A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals

Abstract
This review discusses the role of abscisic acid (ABA)-based drought stress chemical signalling in regulating crop vegetative and reproductive development and its contributions to crop drought adaptation. Increased concentrations of ABA in the root induced by soil drying may maintain root growth and increase root hydraulic conductivity; both lead to an increase in water uptake and thereby postpone the development of water deficit in the shoot. Root ABA is also transported in the xylem to the shoot and is perceived at the acting sites, where it causes stomatal closure and reduced leaf expansion, thereby preventing dehydration of leaf tissues and enhancing the chance for survival under prolonged drought. ABA-based chemical signalling can be amplified by several factors, particularly increased pH in the xylem/apoplast, which retains anionic ABA. Such an increase in xylem pH detected in field-grown maize might have been brought about by reduced nitrate uptake by plants during soil drying. In contrast, xylem sap alkalinisation was not found in soybeans, which depend on fixing nitrogen through their association with Rhizobium japonicum. Evidence has also shown that the xylem-borne ABA can be transported to plant reproductive structures and influence their development, presumably by regulating gene expression that controls cell division and carbohydrate metabolic enzyme activity under drought conditions. The possible involvement of ABA in the up- and down-regulation of acid invertase in crop source (adult leaves) v. sink (young ovaries) organs indicates a crucial role of the hormone in balancing source and sink relationship in plants according to the availability of water in the soil. A novel irrigation technique named partial root-zone drying (PRD), has been developed to allow exploitation of ABA-based drought stress signalling to improve water-use efficiency (WUE) based on its roles in regulating stomatal aperture and leaf expansion. However, little is known about how crop reproductive development is regulated when irrigated under PRD. We suggest that more attention should be paid to the latter aspect as it directly relates to crop yield and quality.