Genomic drift and copy number variation of sensory receptor genes in humans

Abstract
The number of sensory receptor genes varies extensively among different mammalian species. This variation is believed to be caused partly by physiological requirements of animals and partly by genomic drift due to random duplication and deletion of genes. If the contribution of genomic drift is substantial, each species should contain a significant amount of copy number variation (CNV). We therefore investigated CNVs in sensory receptor genes among 270 healthy humans by using published CNV data. The results indicated that olfactory receptor (OR), taste receptor type 2, and vomeronasal receptor type 1 genes show a high level of intraspecific CNVs. In particular, >30% of the approximately 800 OR gene loci in humans were polymorphic with respect to copy number, and two randomly chosen individuals showed a copy number difference of approximately 11 in functional OR genes on average. There was no significant difference in the amount of CNVs between functional and nonfunctional OR genes. Because pseudogenes are expected to evolve in a neutral fashion, this observation suggests that functional OR genes also have evolved in a similar manner with respect to copy number change. In addition, we found that the evolutionary change of copy number of OR genes approximately follows the Gaussian process in probability theory, and the copy number divergence between populations has increased with evolutionary time. We therefore conclude that genomic drift plays an important role for generating intra- and interspecific CNVs of sensory receptor genes. Similar results were obtained when all annotated genes were analyzed.