Inhibition of Infection and Replication of Human Herpesvirus 8 in Microvascular Endothelial Cells by Alpha Interferon and Phosphonoformic Acid

Abstract
Infection of endothelial cells with human herpesvirus 8 (HHV-8) is an essential event in the development of Kaposi's sarcoma. When primary microvascular endothelial cells (MECs) were infected with HHV-8 at a low multiplicity of infection, considerable latent replication of HHV-8 occurred, leading to a time-dependent increase in the percentage of virus-infected cells that was accompanied by cellular spindling and growth to a high density with loss of contact inhibition. Only a low percentage of MECs supported lytic replication of HHV-8 and produced infectious virus. Phosphonoformic acid blocked production of infectious virus but did not inhibit the rapid expansion of latently infected MECs. Pretreatment of MECs with alpha interferon (IFN-α) prior to infection effectively reduced HHV-8 viral gene expression, latent replication, and production of infectious virus. High levels of the double-stranded RNA activated protein kinase (PKR) were expressed in HHV-8-infected cells, and incubation with IFN-α increased PKR expression more in virus-infected cells than in uninfected cells. MECs that were immortalized with simian virus 40 large-T antigen differed from nonimmortalized MECs in their response to infection with HHV-8 and demonstrated that cells with elevated levels of expression of antiviral transcripts expressed viral transcripts at reduced levels. These studies demonstrate that MECs respond to HHV-8 with enhanced expression of cellular antiviral genes and that augmentation of innate antiviral defenses with IFN-α is a more effective strategy than inhibition of viral lytic replication to protect MECs from infection with HHV-8 and to restrict proliferation of virus-infected MECs.