Angiotensin AT1 receptor signalling modulates reparative angiogenesis induced by limb ischaemia

Abstract
1. The concept that angiotensin II exerts pro-angiogenic activity is not universally accepted. We evaluated whether inhibition of the renin-angiotensin system (RAS) would influence reparative angiogenesis in a murine model of limb ischaemia. 2. Perfusion recovery following surgical removal of the left femoral artery was analysed by laser Doppler flowmetry in mice given the ACE inhibitor ramipril (1 mg kg(-1) per day), the AT(1) antagonist losartan (15 mg kg(-1) per day), or vehicle. Muscular capillarity was examined at necroscopy. Ramipril-induced effects were also studied under combined blockade of kinin B(1) and B(2) receptors. Furthermore, the effects of ischaemia on AT(1) gene expression and ACE activity were determined. 3. In untreated mice, muscular AT(1a) gene expression was transiently decreased early after induction of limb ischaemia, whereas AT(1b) mRNA was up-regulated. ACE activity was reduced in ischaemic muscles at 1 and 3 days. Gene expression of AT(1) isoforms as well as ACE activity returned to basal values by day 14. Spontaneous neovascularization allowed for complete perfusion recovery of the ischaemic limb after 21 days. 4. Reparative angiogenesis was negatively influenced by either ramipril (P<0.02) or losartan (P<0.01), leading to delayed and impaired post-ischaemic recovery (50 - 70% less compared with controls). Ramipril-induced effects remained unaltered under kinin receptor blockade. 5. The present study indicates that (a) expression of angiotensin II AT(1) receptors and ACE activity are modulated by ischaemia, (b) ACE-inhibition or AT(1) antagonism impairs reparative angiogenesis, and (c) intact AT(1) receptor signalling is essential for post-ischaemic recovery. These results provide new insights into the role of the RAS in vascular biology and suggest cautionary use of ACE inhibitors and AT(1) antagonists in patients at risk for developing peripheral ischaemia.