Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement.

Abstract
Recent work has indicated that superoxide is involved in the manganese-stimulated oxidation of NADPH by crude granule preparations of guinea pig neutrophils. The characteristics of a model manganese-requiring NADPH-oxidizing system that employs a defined O2-generator have now been compared to the original neutrophil-granule system. With respect to pH dependence, cyanide sensitivity, and reduced pyridine nucleotide specificity, the properties of the two systems are very similar. Additional information has been obtained concerning cation specificity and the kinetics of the metal-catalyzed NADPH oxidation. From the similarities between the properties of the model and neutrophil particle systems, we postulate that the manganese-dependent NADPH oxidation observed in the presence of neutrophil granules represents in large part of nonenzymatic free radical chain involving the oxidation of NADPH to NADP, with O2- as both the chain initiator and one of the propagating species. In this reaction, the neutrophil particles serve only as a source of O2-. Further, the same changes in kinetics (decrease in apparent Km for NADPH) observed previously when granules from phagocytizing rather than resting cells were employed could be mimicked by varying the rate of O2-generation by the model system. We conclude from these results that it is unnecessary to invoke a manganese-requiring enzyme as a component of the phagocytically stimulated respiratory system of the neutrophil.

This publication has 21 references indexed in Scilit: