Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury
- 1 November 1988
- journal article
- research article
- Published by Journal of Neurosurgery Publishing Group (JNSPG) in Journal of Neurosurgery
- Vol. 69 (5), 736-744
- https://doi.org/10.3171/jns.1988.69.5.0736
Abstract
✓ Lactate dynamics in the brain, cerebrospinal fluid (CSF), and serum were studied in 20 chloralose-anesthetized cats following fluid-percussion trauma. Brain lactate and brain tissue pH were measured by hydrogen-1 and phophorus-31 magnetic resonance spectroscopy. The CSF, arterial, and cerebrovenous serum lactate levels as well as serum glucose concentration were quantified. In the six sham-operated control animals, brain, CSF, cerebrovenous, and arterial lactate levels as well as brain pH remained at normal values. In the five animals in the mild-trauma group (1.6 atm), brain and CSF lactate levels were moderately elevated, although the brain pH and serum lactate content remained at control values. Severe trauma (3.1 atm) in nine cats produced an 82% increase in the brain lactate index and a reduction in brain tissue pH (7.02 ± 0.02 to 6.95 ± 0.02; mean ± standard error of the mean), indicating brain tissue acidosis caused by excessive lactate accumulation. Brain lactate levels reached a peak 1½ hours after severe trauma, then steadily decreased to normal levels by 8 hours posttrauma. Maximum increases of CSF and arterial lactate levels (from 1.4 ± 0.2 to 4.1 ± 0.4 and from 1.6 ± 0.2 to 4.1 to 0.6 mmol/liter, respectively) were observed 15 minutes after trauma, and the values decreased during the next 2 hours. The response was biphasic, with a secondary rise observed in both CSF and serum lactate levels during the remaining 4 hours of the experiment. The difference between the arterial and venous lactate levels (A-Vlact) gradually increased and reached a peak 2 hours postinjury (from −0.05 ± 0.10 to −0.41 ± 0.09 mmol/liter). The results of this study show that the production of lactate in brain tissue, CSF, and blood increased in proportion to the severity of the injury. The observation that lactate levels in blood and CSF are maximum immediately following impact while brain lactate and A-Vlact are gradually increasing suggests that the brain-tissue production of lactate fails to account for the rapid appearance of lactate in CSF and blood. It is speculated that the initial elevation of CSF lactate values reflects the systemic response of trauma, and the secondary rise of CSF lactate levels following severe trauma is due to slow seepage of lactate produced by brain tissue into the CSF space. These studies are the first to describe the temporal profile of brain lactate production and eventual clearance by CSF and blood in fluid-percussion injury. The results emphasize the need for caution in interpreting elevated CSF lactate levels following head injury.This publication has 28 references indexed in Scilit:
- Effect of posttraumatic hypoventilation on cerebral energy metabolismJournal of Neurosurgery, 1988
- Combined 1H and 31P nuclear magnetic resonance spectroscopic studies of bicuculline‐induced seizures in vivoAnnals of Neurology, 1986
- Regional brain metabolite levels following mild experimental head injury in the catJournal of Neurosurgery, 1985
- Cerebrospinal Fluid Glucose: Turnover and MetabolismJournal of Neurochemistry, 1985
- Endocrine and metabolic responses after standardized moderate surgical trauma: influence of age and sexClinical Physiology and Functional Imaging, 1984
- Lactate and Pyruvate Concentrations, and Acid-Base Balance of Cerebrospinal Fluid in Experimentally Induced Intracerebral and Subarachnoid Hemorrhage in DogsStroke, 1975
- Acid-base balance and arterial and CSF lactate levels following human head injuryJournal of Neurosurgery, 1974
- Lactate Uptake and Metabolism by Brain During Hyperlactatemia and HypoglycemiaStroke, 1974
- ON THE PATHOPHYSIOLOGY OF THE INCREASED CEREBROVASCULAR PERMEABILITY IN ACUTE ARTERIAL HYPERTENSION IN CATSActa Neurologica Scandinavica, 1972
- Cerebral Spinal Fluid Lactic Acid Following Circulatory ArrestStroke, 1971