Structural Changes in the Photoactive Site of Proteorhodopsin during the Primary Photoreaction

Abstract
Proteorhodopsin (PR), found in marine γ-proteobacteria, is a newly discovered light-driven proton pump similar to bacteriorhodopsin (BR). Because of the widespread distribution of proteobacteria in the worldwide oceanic waters, this pigment may contribute significantly to the global solar energy input in the biosphere. We examined structural changes that occur during the primary photoreaction (PR → K) of wild-type pigment and two mutants using low-temperature FTIR difference spectroscopy. Several vibrations detected in the 3500−3700 cm-1 region are assigned on the basis of H2O → H218O exchange to the perturbation of one or more internal water molecules. Substitution of the negatively charged Schiff base counterion, Asp97, with the neutral asparagine caused a downshift of the ethylenic (CC) and Schiff base (CN) stretching modes, in agreement with the 27 nm red shift of the visible λmax. However, this replacement did not alter the normal all-trans to 13-cis isomerization of the chromophore or the environment of the detected water molecule(s). In contrast, substitution of Asn230, which is in a position to interact with the Schiff base, with Ala induces a 5 nm red shift of the visible λmax and alters the PR chromophore structure, its isomerization to K, and the environment of the detected internal water molecules. The combination of FTIR and site-directed mutagenesis establishes that both Asp97 and Asn230 are perturbed during the primary phototransition. The environment of Asn230 is further altered during the thermal decay of K. These results suggest that significant differences exist in the conformational changes which occur in the photoactive sites of proteorhodopsin and bacteriorhodopsin during the primary photoreaction.