Effects of tumor promoters on sodium ion transport across frog skin

Abstract
Phorbol esters are tumor promoters and mitogens whose effects may be mediated by changes in ion transport across membranes. Clarification of the transport effects of these agents should be facilitated by using a well-characterized model epithelial system whose intracellular and transmural parameters are readily measurable. The current results constitute a preliminary study of the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibutyrate (PDBU), and phorbol on the short-circuit current (Isc) across frog skin. TPA produced two effects: a stimulation of Isc of variable magnitude and a far more constant inhibition of the natriferic action of vasopressin. These effects appear related to the action of TPA as a tumor promoter insofar as PDBU (an active ester) also inhibited the natriferic response to vasopressin, whereas phorbol (inactive as a tumor promoter) had no significant effect. TPA is largely active from the mucosal medium, inhibits the natriferic response to adenosine 3',5'-cyclic monophosphate (cAMP) as well as that to vasopressin, and does not stimulate Isc in the presence of 10(-4) M mucosal amiloride. Inhibition of prostaglandin E1 production by indomethacin had no effect on the actions of TPA. The results indicate that frog skin is a promising model for studying the transport effects of the phorbol esters. The data further suggest that TPA acts on frog skin by activating the physiological amiloride- and cAMP-sensitive channels gating apical Na+ entry from the mucosal medium into the epithelial cells.

This publication has 31 references indexed in Scilit: