Oscillatory convection has been observed in recent experiments in a square, air-filled cavity with differentially heated sidewalls and conducting horizontal surfaces. We show that the onset of the oscillatory convection occurs at a Hopf bifurcation in the steady-state equations for free convection in the Boussinesq approximation. The location of the bifurcation point is found by solving an extended system of steady-state equations. The predicted critical Rayleigh number and frequency at the onset of oscillations are in excellent agreement with the values measured recently and with those of a time-dependent simulation. Four other Hopf bifurcation points are found near the critical point and their presence supports a conjectured resonance between traveling waves in the boundary layers and interior gravity waves in the stratified core.