Abstract
A new kind of aligning material for liquid crystal cells, ladder-like polysilsesquioxanes (LPS) grafted with cinnamoyl side groups, has been developed to improve the thermal stability of the photoalignment layer. The LC aligning ability of the LPS-based alignment layers, fabricated by linearly polarized UV-induced polymerization (LPP), was characterized by polarizing optical microscopy, conoscopic observations and electro-optic response measurements. In particular, a practical and severe annealing test was adopted to examine the thermal stability of the alignment layer; this showed that even when LC cells were annealed at 100 C (much higher than the clearing point of the LC) for several hours, good LC orientation could remain when the cell was cooled to a constant measurement temperature. The results confirmed that the photoalignment layers exhibited not only good LC aligning ability, but also excellent thermal stability, so heralding their potential application in LCDs.