Abstract
Investigations were made on the rye chromosome constitution and on the presence of telomeric heterochromatin in rye chromosomes of the 26 most widely and 24 most narrowly adapted triticale strains. Among widely adapted lines, 22 (85%) had a complete rye genome and four triticales only had chromosomal R-D genome substitutions. Twenty-three (96%) of the 24 most narrowly adapted triticales had substitutions between the chromosomes of the R and D genomes. The most widely adapted triticales accumulated fewer modified rye chromosomes in comparison to narrowly adapted lines. They had from one to three rye chromosomes with heterochromatic deletions: 46% of widely adapted lines had two modified rye chromosomes; 34% had three modified rye chromosomes, and 19% had a single modified rye chromosome. In widely adapted strains, the 1R, 4R, 5R and 6R modified chromosomes were observed; they were present in 80%, 73%, 50% and 11% of the cases, respectively. The most narrowly adapted triticales had from two to four modified rye chromosomes: 58% of the strains had three modified rye chromosomes; 29% had four modified rye chromosomes and 12% had two modified rye chromosomes. The modified 4R and 5R chromosomes were present in all of these lines. The 1R (modified), 6R (modified) and 7R (modified) were found in 83%, 25% and 16%, respectively, of the narrowly adapted strains. Results support the previous observations (Pilch 1980b) that a wide adaptation of hexaploid triticales is associated with the presence of the full potential of rye genome, and that it is independent of the amount of telomeric heterochromatin possessed by rye chromosomes.