A parallel object-oriented framework for stencil algorithms

Abstract
We present an object-oriented framework for constructing parallel implementations of stencil algorithms. This framework simplifies the development process by encapsulating the common aspects of stencil algorithms in a base stencil class so that application-specific derived classes can be easily defined via inheritance and overloading. In addition, the stencil base class contains mechanisms for parallel execution. The result is a high-performance, parallel, application-specific stencil class. We present the design rationale for the base class and illustrate the derivation process by defining two sub-classes, an image convolution class and a PDE solver. The classes have been implemented in Mentat, an object-oriented parallel programming system that is available on a variety of platforms. Performance results are given for a network of Sun SPARCstation IPCs.

This publication has 2 references indexed in Scilit: