Influence of fibrinogen on flow properties of erythrocyte suspensions

Abstract
The influence of fibrinogen on the flow properties of red cell suspensions (hematocrit 41) was studied by viscometry at low rates of shear (0.1–20 sec–1). These findings were correlated with sedimentation rates and photomicrographical studies of cell aggregation. Fibrinogen concentration was varied from 0.3 to 2.0 g/100 ml. The viscosity of the pure solutions of fibrinogen was independent of shear rate, ranging from 0.87 to 1.7 centipoise (cp) at 37 C. The viscosity of the cell suspensions at 10 sec–1 varied from 4.3 cp in 0.3 g/100 ml fibrinogen to 14 cp in 2 g/100 ml fibrinogen. All suspensions were markedly dependent on shear rate, viscosity increasing in exponential-like fashion as shear rate decreased. Extrapolation of plots of shear stress1/2 versus shear rate1/2 revealed the suspensions to sustain a finite stress without deformation or flow, the "yield value" increasing as fibrinogen concentration increased. Photomicrographs of dilute cell suspensions revealed the formation of cell aggregates and rouleaux, increasing in size and descent velocity as fibrinogen concentration increased.

This publication has 1 reference indexed in Scilit: