Interactions of currents and weakly nonlinear water waves in shallow water

Abstract
Two-dimensional Boussinesq-type depth-averaged equations are derived for describing the interactions of weakly nonlinear shallow-water waves with slowly varying topography and currents. The current velocity varies appreciably within a characteristic wavelength. The effects of vorticity in the current field are considered. The wave field is decomposed into Fourier time harmonics. A set of evolution equations for the wave amplitude functions of different harmonics is derived by adopting the parabolic approximation. Numerical solutions are obtained for shallow-water waves propagating over rip currents on a plane beach and an isolated vortex ring. Numerical results show that the wave diffraction and nonlinearity are important in the examples considered.

This publication has 13 references indexed in Scilit: