Abstract
A model for the plasma enhanced chemical vapor deposition of amorphous hydrogenated silicon (a‐Si:H) in rf and dc discharges is presented. The model deals primarily with the plasma chemistry of discharges sustained in gas mixtures containing silane (SiH4). The plasma chemistry model uses as input the electron impact rate coefficients generated in a separate simulation for the electron kinetics and therefore makes no a priori assumptions as to the manner of power deposition. Radical densities and contributions to film growth are discussed as a function of gas mixture, electrode separation, and locale of power deposition, and comparisons are made to experiment. A compendium of reactions and rate constants for silane neutral and ion chemistry is also presented.

This publication has 67 references indexed in Scilit: