Multiple low-level antibiotic resistance in Aeromonas salmonicida

Abstract
Mutants with multiple low-level antibiotic resistance were isolated from virulent wild-type Aeromonas salmonicida strains exposed to a low concentration of any one of several low-molecular-mass (approximately 635 daltons or less) antibiotics. Multiple resistance was toward beta-lactam compounds (penicillin G, ampicillin, cloxacillin), quinolones (flumequine, oxolinic acid, nalidixic acid), tetracyclines, chloramphenicol, and novobiocin. Susceptibilities of the mutants toward several higher-molecular-mass (greater than 700 daltons) hydrophobic or polycationic antibiotics such as rifampin, erythromycin, polymyxin B, and streptomycin sulfate were not affected. The mutants were obtained at frequencies suggesting point mutations. Outer membrane protein profiles, examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed that all multiple low-level resistant mutants were deficient in a major protein of approximately 38.5 kilodaltons and contained a major protein of approximately 37 kilodaltons which was not present in significant amounts in the wild-type strains. In addition, these mutants lacked exoprotease activity. Furthermore, mutants isolated as deficient in exoprotease were found, with the exception of one avirulent strain, to exhibit multiple low-level antibiotic resistance and the outer membrane protein changes.