LMI-based approach for asymptotically stability analysis of delayed neural networks

Abstract
This paper derives some sufficient conditions for asymptotic stability of neural networks with constant or time-varying delays. The Lyapunov-Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) approach are employed to investigate the problem. It shows how some well-known results can be refined and generalized in a straightforward manner. For the case of constant time delays, the stability criteria are delay-independent; for the case of time-varying delays, the stability criteria are delay-dependent. The results obtained in this paper are less conservative than the ones reported so far in the literature and provides one more set of criteria for determining the stability of delayed neural networks.

This publication has 26 references indexed in Scilit: