Ciliary neurotrophic factor potentiates the beta-cell inhibitory effect of IL-1beta in rat pancreatic islets associated with increased nitric oxide synthesis and increased expression of inducible nitric oxide synthase.

Abstract
Proinflammatory cytokines are implicated as effector molecules in the pathogenesis of IDDM. Interleukin-6 (IL-6) alone or in combination with IL-1beta inhibits glucose-stimulated insulin release from isolated rat pancreatic islets by unknown mechanisms. Here we investigated 1) if the effects of IL-6 are mimicked by ciliary neurotrophic factor (CNTF), another member of the IL-6 family of cytokines signaling via gp130, 2) the possible cellular mechanisms for these effects, and 3) if islet endocrine cells are a source of CNTF. CNTF (20 ng/ml) potentiated IL-1beta-mediated (5-150 pg/ml) nitric oxide (NO) synthesis from neonatal Wistar rat islets by 31-116%, inhibition of accumulated insulin release by 34-49%, and inhibition insulin response to a 2-h glucose challenge by 31-36%. CNTF potentiated IL-1beta-mediated NO synthesis from RIN-5AH cells by 83%, and IL-1beta induced islet inducible NO-synthase (iNOS) mRNA expression fourfold. IL-6 (10 ng/ml) also potentiated IL-1beta-mediated NO synthesis and inhibition of insulin release, whereas beta-nerve growth factor (NGF) (5 or 50 ng/ml) had no effect. mRNA for CNTF was expressed in rat islets and in islet cell lines. In conclusion, CNTF is constitutively expressed in pancreatic beta-cells and potentiates the beta-cell inhibitory effect of IL-1beta in association with increased iNOS expression and NO synthesis, an effect shared by IL-6 but not by beta-NGF. These findings indicate that signaling via gp130 influences islet NO synthesis associated with iNOS expression. We hypothesize that CNTF released from destroyed beta-cells during the inflammatory islet lesion leading to IDDM may potentiate IL-1beta action on the beta-cells.