Temporally Irregular Mnemonic Persistent Activity in Prefrontal Neurons of Monkeys During a Delayed Response Task

Abstract
First published November 13, 2002; 10.1152/jn.00825.2002. Physiological studies of neurons in raphe magnus (RM) and the adjacent nucleus reticularis magnocellularis (NRMC) have demonstrated that the response to noxious cutaneous stimulation predicts the response to opioid administration and therefore a cell's functional role in nociceptive modulation. Although visceral stimulation, like opioids, elicits antinociception, little is known about how RM and NRMC cells respond to visceral stimulation. Therefore RM and NRMC cells were tested for their responses to both colorectal distension (CRD) and noxious cutaneous heat in halothane-anesthetized rats. Less than a third of serotonergic cells responded to CRD with small increases or decreases in discharge rate. In contrast, almost two-thirds of nonserotonergic cells responded to CRD stimulation with either excitatory (35%) or inhibitory (30%) responses to CRD. The response to heat did not predict the response to CRD with nearly equal proportions of heat-excited, -inhibited, and -unaffected cells being excited, inhibited, or unaffected by CRD. The dissociation between the responses to cutaneous heat and CRD demonstrates that cell classes based on the response to noxious heat are not homogeneous and may play multiple functional roles.