Perceived geometrical relationships affected by eye-movement signals

Abstract
To determine the location of visual objects relative to the observer, the visual system must take account not only of the location of the stimulus on the retina, but also of the direction of gaze1. In contrast, the perceived spatial relationship between visual stimuli is normally assumed to depend on retinal information alone, and not to require information about eye position. We now show, however, that the perceived alignment of three dots—tested by a vernier alignment task2,3—is systematically altered in the period immediately preceding a saccade. Thus, information about eye position can modify not only the perceived relationship of the entire retinal image to the observer, but also the relations between elements within the image. The processing of relative position and of egocentric (observer-centred) position may therefore be less distinct than previously believed4–6.