Abstract
The mechanism of the HgH A22Π3/2 → X2Σ+ emission detected in the Hg(63P0) photosensitized decomposition of H2 and some of the lower alkanes, RH, was investigated. It was concluded that ground state HgH was formed in the primary process Hg(63P0) + RH(or H2) → HgH(X2Σ+) + R(or H). The HgH A22Π3/2 → X2Σ+ emission and presumably the A12Π1/2 → X2Σ+ and B2Σ+ → X2Σ+ emission, also observed in the above systems, result from secondary excitation of ground state HgH on collision with Hg(63P0). Studies of the emission made possible the estimation of relative quantum yields for the above primary process.