Titin Determines the Frank-Starling Relation in Early Diastole
Open Access
- 13 January 2003
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 121 (2), 97-110
- https://doi.org/10.1085/jgp.20028652
Abstract
Titin, a giant protein spanning half the sarcomere, is responsible for passive and restoring forces in cardiac myofilaments during sarcomere elongation and compression, respectively. In addition, titin has been implicated in the length-dependent activation that occurs in the stretched sarcomere, during the transition from diastole to systole. The purpose of this study was to investigate the role of titin in the length-dependent deactivation that occurs during early diastole, when the myocyte is shortened below slack length. We developed a novel in vitro assay to assess myocyte restoring force (RF) by measuring the velocity of recoil in Triton-permeabilized, unloaded rat cardiomyocytes after rigor-induced sarcomere length (SL) contractions. We compared rigor-induced SL shortening to that following calcium-induced (pCa) contractions. The RF–SL relationship was linearly correlated, and the SL-pCa curve displayed a characteristic sigmoidal curve. The role of titin was defined by treating myocytes with a low concentration of trypsin, which we show selectively degrades titin using mass spectroscopic analysis. Trypsin treatment reduced myocyte RF as shown by a decrease in the slope of the RF-SL relationship, and this was accompanied by a downward and leftward shift of the SL-pCa curve, indicative of sensitization of the myofilaments to calcium. In addition, trypsin digestion did not alter the relationship between SL and interfilament spacing (assessed by cell width) after calcium activation. These data suggest that as the sarcomere shortens below slack length, titin-based restoring forces act to desensitize the myofilaments. Furthermore, in contrast to length-dependent activation at long SLs, length-dependent deactivation does not depend on interfilament spacing. This study demonstrates for the first time the importance of titin-based restoring force in length-dependent deactivation during the early phase of diastole.Keywords
This publication has 44 references indexed in Scilit:
- Length‐dependent activation in three striated muscle types of the ratThe Journal of Physiology, 2002
- Myofilament Calcium Sensitivity in Skinned Rat Cardiac TrabeculaeCirculation Research, 2002
- Structural and functional studies of titin’s fn3 modules reveal conserved surface patterns and binding to myosin S1 - a possible role in the frank-starling mechanism of the heartJournal of Molecular Biology, 2001
- Length Modulation of Active Force in Rat Cardiac Myocytes: is Titin the Sensor?Journal of Molecular and Cellular Cardiology, 1999
- Analytical Properties of the Nanoelectrospray Ion SourceAnalytical Chemistry, 1996
- Titin and nebulin: protein rulers in muscle?Trends in Biochemical Sciences, 1994
- The role of ATP in energy-deprivation contractures in unloaded rat ventricular myocytesCanadian Journal of Physiology and Pharmacology, 1990
- The cellular basis of the length-tension relation in cardiac muscleJournal of Molecular and Cellular Cardiology, 1985
- Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells.The Journal of general physiology, 1978
- Dependence of the contractile activation of skinned cardiac cells on the sarcomere lengthNature, 1975