Abstract
Temperature-dependent surface tension gamma(lv)(T) and its temperature coefficient (T) [=dgamma(lv)(T)/dT] for liquid metals are thermodynamically determined on the basis of an established model for surface energy of crystals. The model predictions correspond to the available experimental or theoretical results. It is found that for metallic liquids gamma(lv)(T(m)) proportional, variant H(v)/V(m)(2/3), gamma(lv)(T) proportional, variant T, and (T) proportional, variant T over a certain temperature range (including T < T(m) and T >/= T(m)), where H(v) and V(m) are the liquid-vapor transition enthalpy at boiling temperature T(b) and the atomic volume at melting temperature T(m), respectively. Furthermore, T(m)(T(m))/gamma(lv)(T(m)) almost remains constant, which gives a way to estimates of (T(m)) values when T(m) and gamma(lv)(T(m)) are known.