Synthesis of thick optical thin-film filters with a layer-peeling inverse-scattering algorithm

Abstract
We present an efficient and accurate method for synthesis of optical thin-film structures. The method is based on a differential inverse-scattering algorithm and considers therefore both phase and amplitude reflectance data. We apply the algorithm to the synthesis of filters with arbitrary index layers and two-material filters consisting of only high- and low-index layers. The layered structure is approximated by a stack of discrete reflectors with equal distance between all reflectors. This mirror stack is in turn determined from the desired, complex reflection spectrum by a layer-peeling inverse-scattering algorithm. The complexity of the design algorithm is approximately the same as that of the forward problem of computing the spectrum from a known structure.