Abstract
An array of current meters was placed on the continental slope and rise for two months in the autumn of 1970. The bottom boundary layer was penetrated on the slope. On the smallest array scale, of the order of 1 kilometer, the array functioned as a directional internal wave antenna. Moving shoreward, the current spectra show strong suppression of the inertial peak and strong enhancement of the semidiurnal tide. The measured wave number spectra show that the tidal energy is almost completely baroclinic, and probably being generated in the region where the slope becomes “critical” for the tidal period. If this area is typical of worldwide conditions, a substantial fraction of the dissipation of surface tides takes place on the continental slopes by conversion to baroclinic waves. The bottom boundary layer has been modeled by an extension of the work of Ellison (1956) to a sloping boundary in a fluid of positive stability. An equivalent constant eddy coefficient has the value 3 cm2/sec as determined from the measurements.

This publication has 18 references indexed in Scilit: