On convergence of the finite-element method for a class of elastic-plastic solids

Abstract
A proof of convergence of the finite-element method in rate-type, quasistatic boundary value problems is presented. The bodies considered may be discretely heterogeneous and elastically anisotropic, their plastic behavior governed by history-dependent, piecewise-linear yield functions and fully coupled hardening rules. Elastic moduli are required to be positive-definite and plastic moduli nonnegative-definite. Precise and complete arguments are given in the case of bodies whose surfaces are piecewise plane.

This publication has 17 references indexed in Scilit: