Analysis of water‐macromolecule proton magnetization transfer in articular cartilage

Abstract
These studies were designed to establish which structural elements of cartilage are responsible for proton magnetization transfer between water (Hf) and macromolecules (Hr) observed in MRI studies on articular cartilage. Saturation transfer techniques were used to monitor magnetization transfer in vitro on samples of the two major constituents of cartilage: collagen and proteoglycan. Articular cartilage samples were also evaluated in vitro before and after the removal of the proteoglycan fraction. Isolated hydrated collagen exhibited a significant proton magnetization transfer rate with water. In contrast, proteoglycans exhibited no proton magnetization transfer. Articular cartilage, in vitro, exhibited a high degree of magnetization transfer with water protons consistent with previous MRI studies in vivo. Enzymatic removal of proteoglycan from the cartilage did not alter the magnetization transfer rate between Hr and Hf. These data demonstrate that the structure and concentration of the collagen matrix are the predominant determinants of the magnetization transfer process in articular cartilage with little or no contribution from proteoglycans. This specificity of the magnetization transfer effect may prove useful in the noninvasive evaluation of cartilage composition and structure in vivo.