A technique for extrapolating and validating forest cover across large regions Calibrating AVHRR data with TM data

Abstract
An approach to extending high-resolution forest cover information across large regions is presented and validated. Landsat Thematic Mapper (TM) data were classified into forest and nonforest for a portion of Jackson County, Illinois. The classified TM image was then used to determine the relationship between forest cover and the spectral signature of Advanced Very High Resolution Radiometer (AVHRR) pixels covering the same location. Regression analysis was used to develop an empirical relationship between AVHRR spectral signatures and forest cover. The regression equation developed from data from the single county calibration area in southern Illinois was then applied to the entire AVHRR scene, which covered all or parts of ten states, to produce a regional map of forest cover. This map was used to derive estimates of forest cover, within a geographical information system (GIS), for each of the 428 counties located within the boundaries of the original AVHRR scene. The validity of the overall regional map was tested by comparing the AVHRR/TM-derived estimates of county forest cover with independent estimates of county forest cover developed by the U.S. Forest Service (USFS). The overall correlation coefficient of the AVHRR/TM and USFS county forest cover estimates was r=0-89 (n=428 counties). Not surpris0ingly, some individual states and the areas nearer to the southern Illinois calibration centre had higher correlation coefficients. Absolute estimates of forest cover percentages were also significantly well predicted. With the future inclusion of multiple calibration centres representing a number of physiographic regions, the method shows promise for predicting continental and global estimates of forest cover.