Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development
- 15 April 2002
- journal article
- Published by Springer Nature in Nature Genetics
- Vol. 31 (1), 84-88
- https://doi.org/10.1038/ng876
Abstract
Retinoic acid, the active derivative of vitamin A (retinol), is a hormonal signaling molecule that acts in developing and adult tissues. The Cyp26a1 (cytochrome p450, 26) protein metabolizes retinoic acid into more polar hydroxylated and oxidized derivatives. Whether some of these derivatives are biologically active metabolites has been debated. Cyp26a1(-/-) mouse fetuses have lethal morphogenetic phenotypes mimicking those generated by excess retinoic acid administration, indicating that human CYP26A1 may be essential in controlling retinoic acid levels during development. This hypothesis suggests that the Cyp26a1(-/-) phenotype could be rescued under conditions in which embryonic retinoic acid levels are decreased. We show that Cyp26a1(-/-) mice are phenotypically rescued by heterozygous disruption of Aldh1a2 (also known as Raldh2), which encodes a retinaldehyde dehydrogenase responsible for the synthesis of retinoic acid during early embryonic development. Aldh1a2 haploinsufficiency prevents the appearance of spina bifida and rescues the development of posterior structures (sacral/caudal vertebrae, hindgut, urogenital tract), while partly preventing cervical vertebral transformations and hindbrain pattern alterations in Cyp26a1(-/-) mice. Thus, some of these double-mutant mice can reach adulthood. This study is the first report of a mutation acting as a dominant suppressor of a lethal morphogenetic mutation in mammals. We provide genetic evidence that ALDH1A2 and CYP26A1 activities concurrently establish local embryonic retinoic acid levels that must be finely tuned to allow posterior organ development and to prevent spina bifida.Keywords
This publication has 20 references indexed in Scilit:
- The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structuresGenes & Development, 2001
- Complementary Domains of Retinoic Acid Production and Degradation in the Early Chick EmbryoDevelopmental Biology, 1999
- Regionalized metabolic activity establishes boundaries of retinoic acid signallingThe EMBO Journal, 1998
- Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse developmentMechanisms of Development, 1997
- Identification of the Retinoic Acid-inducible All-trans-retinoic Acid 4-HydroxylaseJournal of Biological Chemistry, 1996
- Molecular Identification of a Major Retinoic‐Acid‐Synthesizing Enzyme, a Retinaldehyde‐Specific DehydrogenaseEuropean Journal of Biochemistry, 1996
- 4-Oxoretinol, a new natural ligand and transactivator of the retinoic acid receptors.Proceedings of the National Academy of Sciences, 1996
- The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specificationNature, 1993
- Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbsCell, 1993
- Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis.Genes & Development, 1991