Abstract
Utilizing an in vivo labeling method on synchronized cultures, we have previously defined a 28-kilobase (kb) replication initiation locus in the amplified dihydrofolate reductase domain of a methotrexate-resistant Chinese hamster ovary cell line (CHOC 400) (N. H. Heintz and J. L. Hamlin, Proc. Natl. Acad. Sci. USA 79:4083-4087, 1982; N. H. Heintz and J. L. Hamlin, Biochemistry 22:3552-3557, 1983; N. H. Heintz, J. D. Milbrandt, K. S. Greisen, and J. L. Hamlin, Nature [London] 302:439-441, 1983). To locate the origin of replication in this 243-kb amplicon with more precision, we used an in-gel renaturation procedure (I. Roninson, Nucleic Acids Res. 11:5413-5431, 1983) to examine the labeling pattern of restriction fragments from the amplicon in the early S phase. This method eliminates background labeling from single-copy sequences and allows quantitation of the relative radioactivity in individual fragments. We used this procedure to follow the movement of replication forks through the amplicons, to roughly localize the initiation locus, and to estimate the rate of fork travel. We also used a slight modification of this method (termed hybridization enhancement) to illuminate the labeling pattern of smaller restriction fragments derived solely from the initiation locus itself, thereby increasing resolution. Our preliminary results suggest that there are actually two distinct initiation sites in the amplicon that are separated by approximately 22 kb.