Relaxation bottleneck and its suppression in semiconductor microcavities

Abstract
A polariton relaxation bottleneck is observed in angle-resolved measurements of photoluminescence emission from a semiconductor microcavity. For low power laser excitation, low k polariton states are found to have a very small population relative to those at high k. The bottleneck is found to be strongly suppressed at higher powers in the regime of superlinear emission of the lower polariton states. Evidence for the important role of carrier-carrier scattering in suppression of the bottleneck is presented.