A Shape‐Adaptive Thin‐Film‐Based Approach for 50% High‐Efficiency Energy Generation Through Micro‐Grating Sliding Electrification

Abstract
Effectively harvesting ambient mechanical energy is the key for realizing self‐powered and autonomous electronics, which addresses limitations of batteries and thus has tremendous applications in sensor networks, wireless devices, and wearable/implantable electronics, etc. Here, a thin‐film‐based micro‐grating triboelectric nanogenerator (MG‐TENG) is developed for high‐efficiency power generation through conversion of mechanical energy. The shape‐adaptive MG‐TENG relies on sliding electrification between complementary micro‐sized arrays of linear grating, which offers a unique and straightforward solution in harnessing energy from relative sliding motion between surfaces. Operating at a sliding velocity of 10 m/s, a MG‐TENG of 60 cm2 in overall area, 0.2 cm3 in volume and 0.6 g in weight can deliver an average output power of 3 W (power density of 50 mW cm−2 and 15 W cm−3) at an overall conversion efficiency of ∼50%, making it a sufficient power supply to regular electronics, such as light bulbs. The scalable and cost‐effective MG‐TENG is practically applicable in not only harvesting various mechanical motions but also possibly power generation at a large scale.