In Vivo Eradication of Human BCR/ABL-Positive Leukemia Cells With an ABL Kinase Inhibitor

Abstract
BACKGROUND: The leukemia cells of approximately 95% of patients with chronic myeloid leukemia and 30%-50% of adult patients with acute lymphoblastic leukemia express the Bcr/Abl oncoprotein, which is the product of a fusion gene created by a chromosomal translocation [(9:22) (q34;q11)]. This oncoprotein expresses a constitutive tyrosine kinase activity that is crucial for its cellular transforming activity. In this study, we evaluated the antineoplastic activity of CGP57148B, which is a competitive inhibitor of the Bcr/Abl tyrosine kinase. METHODS: Nude mice were given an injection of the Bcr/Abl-positive human leukemia cell lines KU812 or MC3. Tumor-bearing mice were treated intraperitoneally or orally with CGP57148B according to three different schedules. In vitro drug wash-out experiments and in vivo molecular pharmacokinetic experiments were performed to optimize the in vivo treatment schedule. RESULTS: Treatment schedules administering CGP57148B once or twice per day produced some inhibition of tumor growth, but no tumor-bearing mouse was cured. A single administration of CGP57148B caused substantial (>50%) but short-lived (2-5 hours) inhibition of Bcr/Abl kinase activity. On the basis of the results from in vitro wash-out experiments, 20-21 hours was defined as the duration of continuous exposure needed to block cell proliferation and to induce apoptosis in these two leukemia cell lines. A treatment regimen assuring the continuous block of the Bcr/Abl phosphorylating activity that was administered over an 11-day period cured 87%-100% of treated mice. CONCLUSION: These data indicate that the continuous block of the oncogenic tyrosine kinase of Bcr/Abl protein is needed to produce important biologic effects in vivo.