Pseudomonas aeruginosa-Plant Root Interactions. Pathogenicity, Biofilm Formation, and Root Exudation
Open Access
- 1 January 2004
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 134 (1), 320-331
- https://doi.org/10.1104/pp.103.027888
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen capable of forming a biofilm under physiological conditions that contributes to its persistence despite long-term treatment with antibiotics. Here, we report that pathogenic P. aeruginosa strains PAO1 and PA14 are capable of infecting the roots of Arabidopsis and sweet basil (Ocimum basilicum), in vitro and in the soil, and are capable of causing plant mortality 7 d postinoculation. Before plant mortality, PAO1 and PA14 colonize the roots of Arabidopsis and sweet basil and form a biofilm as observed by scanning electron microscopy, phase contrast microscopy, and confocal scanning laser microscopy. Upon P. aeruginosa infection, sweet basil roots secrete rosmarinic acid (RA), a multifunctional caffeic acid ester that exhibits in vitro antibacterial activity against planktonic cells of both P. aeruginosa strains with a minimum inhibitory concentration of 3 μg mL-1. However, in our studies RA did not attain minimum inhibitory concentration levels in sweet basil's root exudates before P. aeruginosa formed a biofilm that resisted the microbicidal effects of RA and ultimately caused plant mortality. We further demonstrated that P. aeruginosa biofilms were resistant to RA treatment under in vivo and in vitro conditions. In contrast, induction of RA secretion by sweet basil roots and exogenous supplementation of Arabidopsis root exudates with RA before infection conferred resistance to P. aeruginosa. Under the latter conditions, confocal scanning laser microscopy revealed large clusters of dead P. aeruginosa on the root surface of Arabidopsis and sweet basil, and biofilm formation was not observed. Studies with quorum-sensing mutants PAO210 (ΔrhlI), PAO214 (ΔlasI), and PAO216 (ΔlasI ΔrhlI) demonstrated that all of the strains were pathogenic to Arabidopsis, which does not naturally secrete RA as a root exudate. However, PAO214 was the only pathogenic strain toward sweet basil, and PAO214 biofilm appeared comparable with biofilms formed by wild-type strains of P. aeruginosa. Our results collectively suggest that upon root colonization, P. aeruginosa forms a biofilm that confers resistance against root-secreted antibiotics.Keywords
This publication has 39 references indexed in Scilit:
- Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and TobramycinAntimicrobial Agents and Chemotherapy, 2003
- Pseudomonas aeruginosa Anaerobic Respiration in BiofilmsDevelopmental Cell, 2002
- Pseudomonas - Candida Interactions: An Ecological Role for Virulence FactorsScience, 2002
- Statistical Analysis of Pseudomonas aeruginosa Biofilm Development: Impact of Mutations in Genes Involved in Twitching Motility, Cell-to-Cell Signaling, and Stationary-Phase Sigma Factor ExpressionApplied and Environmental Microbiology, 2002
- Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variationNature, 2002
- Initiation of Biofilm Formation by Pseudomonas aeruginosa 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching MotilitiesJournal of Bacteriology, 2001
- Pathogenesis of the Human Opportunistic PathogenPseudomonas aeruginosa PA14 in ArabidopsisPlant Physiology, 2000
- MICROBIAL BIOFILMSAnnual Review of Microbiology, 1995
- Susceptibility of bacterial biofilms to tobramycin: role of specific growth rate and phase in the division cycleJournal of Antimicrobial Chemotherapy, 1990
- A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue CulturesPhysiologia Plantarum, 1962